Welcome
   Home | Texts by category | | Quick Search:   
Authors
Works by Galen
Pages of On The Natural Faculties



Previous | Next
                  

On The Natural Faculties   


During the third period the stomach has reached the stage of receiving nourishment; it now entirely assimilates everything that had become adherent to it: at the same time in the intestines and liver there takes place adhesion of what had been before presented, while dispersal [anadosis] is taking place to all parts of the body, as also presentation. Now, if the animal takes food immediately after these [three stages] then, during the time that the stomach is again digesting and getting the benefit of this by presenting all the useful part of it to its own coats, the intestines will be engaged in final assimilation of the juices which have adhered to them, and so also will the liver: while in the various parts of the body there will be taking place adhesion of the portions of nutriment presented. And if the stomach is forced to remain without food during this time, it will draw its nutriment the from the veins in the mesentery and liver; for it will not do so from the actual body of the liver (by body of the liver I mean first and foremost its flesh proper, and after this all the vessels contained in it), for it is irrational to suppose that one part would draw away from another part the juice already contained in it, especially when adhesion and final assimilation of that juice were already taking place; the juice, however, that is in the cavity of the veins will be abstracted by the part which is stronger and more in need.

It is in this way, therefore, that the stomach, when it is in need of nourishment and the animal has nothing to eat, seizes it from the veins in the liver. Also in the case of the spleen we have shown in a former passage how it draws all material from the liver that tends to be thick, and by working it up converts it into more useful matter. There is nothing surprising, therefore, if, in the present instance also, some of this should be drawn from the spleen into such organs as communicate with it by veins, e.g. the omentum, mesentery, small intestine, colon, and the stomach itself. Nor is it surprising that the spleen should disgorge its surplus matters into the stomach at one time, while at another time it should draw some of its appropriate nutriment from the stomach.

For, as has already been said, speaking generally, everything has the power at different times of attracting from and of adding to everything else. What happens is just as if you might imagine a number of animals helping themselves at will to a plentiful common stock of food; some will naturally be eating when others have stopped, some will be on the point of stopping when others are beginning, some eating together, and others in succession. Yes, by Zeus! and one will often be plundering another, if he be in need while the other has an abundant supply ready to hand. Thus it is in no way surprising that matter should make its way back from the outer surface of the body to the interior, or should be carried from the liver and spleen into the stomach by the same vessels by which it was carried in the reverse direction.

In the case of the arteries this is clear enough, as also in the case of heart, thorax, and lungs; for, since all of these dilate and contract alternately, it must needs be that matter is subsequently discharged back into the parts from which it was previously drawn. Now Nature foresaw this necessity, and provided the cardiac openings of the vessels with membranous attachments, to prevent their contents from being carried backwards. How and in what manner this takes place will be stated in my work "On the Use of Parts," where among other things I show that it is impossible for the openings of the vessels to be closed so accurately that nothing at all can run back. Thus it is inevitable that the reflux into the venous artery (as will also be made clear in the work mentioned) should be much greater than through the other openings. But what it is important for our present purpose to recognise is that every thing possessing a large and appreciable cavity must, when it dilates, abstract matter from all its neighbours, and, when it contracts, must squeeze matter back into them. This should all be clear from what has already been said in this treatise and from what Erasistratus and I myself have demonstrated elsewhere respecting the tendency of a vacuum to become refilled.

14. And further, it has been shown in other treatises that all the arteries possess a power which derives from the heart, and by virtue of which they dilate and contract.

Put together, therefore, the two facts- that the arteries have this motion, and that everything, when it dilates, draws neighbouring matter into itself- and you will find nothing strange in the fact that those arteries which reach the skin draw in the outer air when they dilate, while those which anastomose at any point with the veins attract the thinnest and most vaporous part of the blood which these contain, and as for those arteries which are near the heart, it is on the heart itself that they exert their traction. For, by virtue of the tendency by which a vacuum becomes refilled, the lightest and thinnest part obeys the tendency before that which is heavier and thicker. Now the lightest and thinnest of anything in the body is firstly pneuma, secondly vapour, and in the third place that part of the blood which has been accurately elaborated and refined.

These, then, are what the arteries draw into themselves on every side; those arteries which reach the skin draw in the outer air (this being near them and one of the lightest of things); as to the other arteries, those which pass up from the heart into the neck, and that which lies along the spine, as also such arteries as are near these- draw mostly from the heart itself; and those which are farther from the heart and skin necessarily draw the lightest part of the blood out of the veins. So also the traction exercised by the diastole of the arteries which go to the stomach and intestines takes place at the expense of the heart itself and the numerous veins in its neighbourhood; for these arteries cannot get anything worth speaking of from the thick heavy nutriment contained in the intestines and stomach, since they first become filled with lighter elements. For if you let down a tube into a vessel full of water and sand, and suck the air out of the tube with your mouth, the sand cannot come up to you before the water, for in accordance with the principle of the refilling of a vacuum the lighter matter is always the first to succeed to the evacuation.

15. is not to be wondered at, therefore, that only a very little [nutrient matter] such, namely, as has been accurately elaborated- gets from the stomach into the arteries, since these first become filled with lighter matter. We must understand that there are two kinds of attraction, that by which a vacuum becomes refilled and that caused by appropriateness of quality; air is drawn into bellows in one way, and iron by the lodestone in another. And we must also understand that the traction which results from evacuation acts primarily on what is light, whilst that from appropriateness of quality acts frequently, it may be, on what is heavier (if this should be naturally more nearly related). Therefore, in the case of the heart and the arteries, it is in so far as they are hollow organs, capable of diastole, that they always attract the lighter matter first, while, in so far as they require nourishment, it is actually into their coats (which are the real bodies of these organs) that the appropriate matter is drawn. Of the blood, then, which is taken into their cavities when they dilate, that part which is most proper to them and most able to afford nourishment is attracted by their actual coats.

Now, apart from what has been said, the following is sufficient proof that something is taken over from the veins into the arteries. If you will kill an animal by cutting through a number of its large arteries, you will find the veins becoming empty along with the arteries: now, this could never occur if there were not anastomoses between them. Similarly, also, in the heart itself, the thinnest portion of the blood is drawn from the right ventricle into the left, owing to there being perforations in the septum between them: these can be seen for a great part [of their length]; they are like a kind of fossae [pits] with wide mouths, and they get constantly narrower; it is not possible, however, actually to observe their extreme terminations, owing both to the smallness of these and to the fact that when the animal is dead all the parts are chilled and shrunken. Here, too, however, our argument, starting from the principle that nothing is done by Nature in vain, discovers these anastomoses between the ventricles of the heart; for it could not be at random and by chance that there occurred fossae ending thus in narrow terminations.

Previous | Next
Site Search