Welcome
   Home | Texts by category | | Quick Search:   
Authors
Works by Galen
Pages of On The Natural Faculties



Previous | Next
                  

On The Natural Faculties   


And secondly [the presence of these anastomoses has been assumed] from the fact that, of the two orifices in the right ventricle, the one conducting blood in and the other out, the former* is much the larger. For, the fact that the insertion of the vena cava into the heart is larger than the vein which is inserted into the lungs suggests that not all the blood which the vena cava gives to the heart is driven away again from the heart to the lungs. Nor can it be said that any of the blood is expended in the nourishment of the actual body of the heart, since there is another vein** which breaks up in it and which does not take its origin nor get its share of blood from the heart itself. And even if a certain amount is so expended, still the vein leading to the lungs is not to such a slight extent smaller than that inserted into the heart as to make it likely that the blood is used as nutriment for the heart: the disparity is much too great for such an explanation. It is, therefore, clear that something is taken over into the left ventricle.***

*The tricuspid orifice.

**The coronary vein.

***Galen's conclusion, of course, is, so far, correct, but he has substituted an imaginary direct communication between the ventricles for the actual and more round about pulmonary circulation of whose existence he apparently had no idea. His views were eventually corrected by the Renascence anatomists.

Moreover, of the two vessels connected with it, that which brings pneuma into it from the lungs is much smaller than the great outgrowing artery from which the arteries all over the body originate; this would suggest that it not merely gets pneuma from the lungs, but that it also gets blood from the right ventricle through the anastomoses mentioned.

Now it belongs to the treatise "On the Use of Parts" to show that it was best that some parts of the body should be nourished by pure, thin, and vaporous blood, and others by thick, turbid blood, and that in this matter also Nature has overlooked nothing. Thus it is not desirable that these matters should be further discussed. Having mentioned, however, that there are two kinds of attraction, certain bodies exerting attraction along wide channels during diastole (by virtue of the principle by which a vacuum becomes refilled) and others exerting it by virtue of their appropriateness of quality, we must next remark that the former bodies can attract even from a distance, while the latter can only do so from among things which are quite close to them; the very longest tube let down into water can easily draw up the liquid into the mouth, but if you withdraw iron to a distance from the lodestone or corn from the jar (an instance of this kind has in fact been already given) no further attraction can take place.

This you can observe most clearly in connection with garden conduits. For a certain amount of moisture is distributed from these into every part lying close at hand but it cannot reach those lying farther off: therefore one has to arrange the flow of water into all parts of the garden by cutting a number of small channels leading from the large one. The intervening spaces between these small channels are made of such a size as will, presumably, best allow them [the spaces] to satisfy their needs by drawing from the liquid which flows to them from every side. So also is it in the bodies of animals. Numerous conduits distributed through the various limbs bring them pure blood, much like the garden water-supply, and, further, the intervals between these conduits have been wonderfully arranged by Nature from the outset so that the intervening parts should be plentifully provided for when absorbing blood, and that they should never be deluged by a quantity of superfluous fluid running in at unsuitable times.

For the way in which they obtain nourishment is somewhat as follows. In the body* which is continuous throughout, such as Erasistratus supposes his simple vessel to be, it is the superficial parts which are the first to make use of the nutriment with which they are brought into contact; then the parts coming next draw their share from these by virtue of their contiguity; and again others from these; and this does not stop until the quality of the nutrient substance has been distributed among all parts of the corpuscle in question. And for such parts as need the humour which is destined to nourish them to be altered still further, Nature has provided a kind of storehouse, either in the form of a central cavity or else as separate caverns, or something analogous to caverns. Thus the flesh of the viscera and of the muscles is nourished from the blood directly, this having undergone merely a slight alteration; the bones, however, in order to be nourished, very great change, and what blood is to flesh marrow is to bone; in the case of the small bones, which do not possess central cavities, this marrow is distributed in their caverns, whereas in the larger bones which do contain central cavities the marrow is all concentrated in these.

*Or we may render it "corpuscle"; Galen practically means the cell.

Previous | Next
Site Search